Curriculum Progression Pathway

MATHS

Why is the study of Maths important?

Mathematics has two disciplines: Pure and Applied - Pure Mathematics is the abstract science of number, quantity, and space, either as abstract concepts and/or Applied Mathematics is where the knowledge learned is applied to other disciplines such as statistics, physics and engineering.

In Year 7 and 8 your mathematics study focuses mastery building your fluency and understanding in readiness for your future GCSE and even A level mathematics study. Our curriculum is carefully designed to ensure that all students get a firm grounding in the basic rules of number. This is differentiated by depth, as opposed to students racing onto the next topic. This approach develops more confident mathematicians as students move through the curriculum. Your study of mathematics at Outwood will make you think about the beauty of how numbers connect and how processes relate to each other. Mathematics encourages you to discover those connections for yourself, to make you a detective of mathematics and to explore how to solve problems. This enables you to become an analytical thinker, someone who sees that the answer is only the beginning. It will help you to learn how to make conjectures (a conclusion based on evidence, patterns and thought, but not yet confirmed with proof) to reason and to prove. It will enable you to be more logical in your approach to complex issues and be more analytical.

From Year 7 you will have the exciting opportunity to explore the four rules of number in great depth - how addition leads to multiplication, and how these two lead to subtraction and division. You will discover how these four rules can be applied to fractions, decimals and algebra and how multiplicative reasoning can be applied to many areas of maths, such as percentages, ratio, proportion and enlargement to name but a few. You will get to investigate the beauty of mathematics connected to shape, and the usefulness it brings in analysing data and solving mechanical problems.

Your study of Mathematics will encourage you to think deeply and help you to problem solve more effectively - a great life skill that all universities and employers will appreciate. Across your study you will explore number, algebra, shape and space and statistics. Lessons will provide a wide range of opportunities for constructing your own learning and discovering your own rules, through the use of concrete materials such as counters, through pictorial representations to demonstrate mathematical concepts and to apply these to solve problems, both abstract and from real-life.

Maths lessons will be full of discussion, questioning, proving and explaining. You are going to love it! Mathematics will expand your mind!

Big Questions such as: How tiny is the earth in comparison

 with the universe?, How can solutions to difficult engineering problems can be found by using graphs and calculus?, How do people predict what is going to happen in the economy? and other such seemingly bewildering questions will be answered... you just need to learn the basics, be an inquisitive learner, and the rest will follow.
What skills will the study of Mathematics teach you?

You are a citizen in this world and you need to know the basic skills of number and how to apply them to a range of problems known as 'being numerate'. It will teach you:

- Not to be afraid of "being lost" and having to struggle to find one's way through the problem - RESILIENCE!
- To use calculation to solve basic problems
- To make and use generalisations-often quite quickly. One of the basic abilities, easily detectable even at the level of primary school: after solving a single example from a series, a child immediately knows how to solve all examples of the same kind.
- To have rapid and sound memorisation of mathematical material.
- To be able to concentrate on mathematics for long periods without apparent signs of tiredness.
- To be able to offer and use multiple representations of the same mathematical object. (For example, switching easily between representations of the same function by tables, charts, graphs, and analytic expressions.)
- An instinctive tendency to approach a problem in different ways: even if a problem has been already solved, you are keen to find an alternative solution.
- To utilise analogies and make connections.
- Skills to link two (or more) elementary procedures to construct a solution to a multi-step problem.
- To recognise what it means to "know for certain".
- To detect unstated assumptions in a problem, and either to explicate and utilise them, or to reject the problem as illdefined.
- To be efficient, a distinctive tendency for "economy of thought," striving to find the most economical ways to solve problems, for clarity and simplicity in a solution.
- To be aware of the presence and importance of an underlying structure.
- To use rapid abbreviation, compression or a curtailment of reasoning in problem solving e.g. algebra.
- How to grasp encapsulation and de-encapsulation of mathematical objects and procedures.

How does your study of Mathematics support your study in other subjects?

Study of any subject in our curriculum takes full advantage of links with other subject areas- we term these as interdisciplinary links and we make the most of them because we know that deep learning requires the transference of knowledge and skills from one topic of learning to another. Once you can transfer your learning across topics and subject areas then you are really mastering what you know and how to apply your understanding and skills.

Mathematics touches on many other subjects such as geography and science, any subject that analyses data, looks at trends, uses formulae. Computer Science is a subject that uses the algorithmic approach that many topics in mathematics also use. The ability to follow a process accurately is applicable to many other subjects too. The Social Sciences, particularly at Post 16 and at undergraduate level have a strong need for the use of data, for understanding of exponential growth and decay, for manipulation of formulae - and this is one reason why the Core Maths AS Level was introduced recently.

Across the other subjects, teachers will make reference to your learning in Maths and this will help you to develop your understanding. There are opportunities to explore the links between science, engineering and mathematics departments in STEM activities.

Outside of Mathematics lessons there are a range of initiatives that can help you deepen your understanding of mathematics such as Numeracy Ninjas, Timetable Rock Stars, UKMT Maths Challenge led by Leeds University, Maths Masters - for our elite mathematicians, Outwood Maths Challenge with Y5 \& 6 and online learning programmes such as the wonderful Hegarty Maths.

How are you assessed in Mathematics?

Throughout the 5 or 7 years Mathematics course you are assessed using the following assessment objectives which ensure that you can cumulatively build your subject understanding in preparation for future GCSE and A Level study. There are 6 assessment points each year that we term Praising Stars ${ }^{\ominus}$. In Year 7 and 8 we assess against age related expectation in Years 9, 10 and II we assess against GCSE specification criteria.

Key Assessment Objectives

AOI: Use and apply standard techniques

Students should be able to:

- accurately recall facts, terminology and definitions
- use and interpret notation correctly
- accurately carry out routine procedures or set tasks requiring multi-step solutions

AO2: Reason, interpret and communicate mathematically

Students should be able to:

- make deductions, inferences and draw conclusions from mathematical information
- construct chains of reasoning to achieve a given result
- interpret and communicate information accurately
- present arguments and proofs
- assess the validity of an argument and critically evaluate a given way of presenting information

AO3: Solve problems within mathematics and in other contexts

Students should be able to:

- translate problems in mathematical or non-mathematical contexts into a process or a series of mathematical processes
- make and use connections between different parts of mathematics
- interpret results in the context of the given problem
- evaluate methods used and results obtained
- evaluate solutions to identify how they may have been affected by assumptions made

GCSE specifications in mathematics should enable students to:

I. develop fluent knowledge, skills and understanding of mathematical methods and concepts
2. acquire, select and apply mathematical techniques to solve problems
3. reason mathematically, make deductions and inferences and draw conclusions
4. comprehend, interpret and communicate mathematical information in a variety of forms appropriate to the information and context.

How can Mathematics support your future?

We offer the study of GCSE and A Level Mathematics, Further Mathematics and Core Mathematics and we strongly encourage your continued study in this fantastic subject if you have demonstrated a passion for it, a flair and an ability.

However, whether you have chosen to study Mathematics into A Level or not, you will have gained a lot from its study over the 5 years from years 7-II. We know that the depth of understanding we encourage and support you to achieve will set you up well to be not only numerate, but a really logical and analytical thinker, who is resilient and ready to solve problems.

Mathematics is offered at prestigious universities either as a single honours or a joint honours subject studied alongside other disciplines e.g. Statistics, Computer Science, Science, Philosophy, Engineering.

A high level of qualification in mathematics is a pre-requisite for honours degrees in many engineering and physics related subjects.

It is also cited that an A Level in maths demonstrates the very high level of analytical thinking that many universities are looking for in their applicants. The very fact that you have been able to study mathematical thinking Post 16 will help your future applications, whether they be for colleges, universities, apprenticeships or employment.

A strong GCSE in maths opens doors for your future career employers look favourably on this and it would put you in a very strong position when looking for jobs or placements Post 16 and in colleges.

Careers that the study of mathematics supports include:

- Actuarial analyst
- Actuary
- Chartered accountant
- Chartered certified accountant
- Data analyst
- Data scientist
- Investment analyst
- Research scientist (maths)
- Secondary school teacher
- Software engineer
- Statistician
- Civil Service fast streamer
- Financial manager
- Financial trader
- Insurance underwriter
- Meteorologist
- Operational researcher
- Quantity surveyor
- Software tester

MATHEMATICS

	Year 7	Year 8	Year 9	Year 10	Year II
Autumn 1	UNIT I Solve word problems (add and subtract) I. Place value (including decimals) Place Value NS 2. Add and subtract (including decimals) 3. Estimation 4. Perimeter	UNIT 6 Percentages \& statistics I. Convert FDP Basic FDP NS 2. Ordering FDP \& equivalence 3. Percentage of an amount 4. Find the whole, given the part and the percentage 5. Construct statistical diagrams incl. pie charts	UNIT II Probability and Statistics I. Probability 2. Mean of grouped data 3. Compare two data sets including stem-and-leaf diagrams 4. Scatter graphs	UNIT 17 Equations and Inequalities I. Construct and solve equations and inequalities 2. Graphical solutions to simultaneous linear equations 3. Quadratic and other graphs	UNIT 23 Reasoning I. Algebraic arguments 2. Loci 3. Key angle and shape facts 4. Coordinates (including midpoints, problems) 5. Equations of parallel and equations of perpendicular lines 6. Vectors and vector proofs
Autumn 2	UNIT 2 Explain \& Investigate (multiply \& divide) Bar Modelling NS I. Factors, HCF, multiples, LCM 2. Multiply and divide (including decimals) 3. Area of rectangle and triangle 4. Calculate the mean	UNIT 7 Number I. Primes and indices 2. Prime factorisation to find LCM, HCF, squares, cubes 3. Venn diagrams and enumerating sets 4. Add and subtract fractions	UNIT 12 Proportional Reasoning I. Ratio - equivalence and simplifying 2. Ratio - problem solving 3. Proportional Reasoning Proportion NS 4. Maps and scales Ratio and Rate incl. speed, distance, time	UNIT 18 Sampling and Probability I. Populations and samples 2. Theoretical and experimental probability 3. Listing 4. Set notation 5. Venn diagrams 6. Combined events, including tree diagrams and conditional probability	UNIT 24 Geometry and Number I. Properties of 3-D shapes; their plans and elevations 2. Surface area and volume of pyramids, cones and spheres (including exact answers) and similar areas and volumes 3. Trigonometry in all triangles 4. Indices and Surds 5. Limits of accuracy and upper and lower bounds
Spring I	UNIT 3 Geometry I. Draw, measure and name acute and obtuse angles Time NS 2. Find unknown angles (straight lines, at a point, vertically opposite) Number bonds NS 3. Properties of triangles and quadrilaterals	UNIT 8 Algebraic expressions I. Formulate and evaluate expressions 2. Linear equations 3. Expressions and equations from realworld situations 4. Linear sequences: nth term	UNIT I3 3-D geometry I. Rounding, significant figures and estimation 2. Circumference and area of a circle 3. Visualise and identify 3-D shapes and their nets 4. Volume and surface area of cuboid, prism, cylinder, composite solids	UNIT 19 Geometry I. Bearings 2. Transformations (translation, rotation, reflection) and combined transformations 3. Use known angle and shape facts to obtain simple proofs 4. Enlargement and negative scale factors of enlargement. Combine transformations	UNIT 25 Applications of Algebra I. Expand and factorise binomials and algebraic fractions 2. Quadratic equations and complete the square, quadratic formula, quadratic inequalities 3. Cubic and reciprocal graphs, exponential graphs, trig graphs, transformations of graphs 4. Simultaneous equations 5. Graphical solutions of equations

MATHEMATICS

	Year 7	Year 8	Year 9	Year 10	Year II
Spring 2	UNIT 4 Fractions I. Introduction to fractions 2. Equivalent fractions Factors NS 3. Change mixed numbers to improper fractions \& vice versa 4. Fraction of a quantity \& multiplying fractions 5. Divide fractions	UNIT 9 2-D geometry I. Draw accurate triangles and quadrilaterals Measuring lengths NS 2. Find unknown angles (incl. parallel lines) 3. Conversion between length units and between area units Powers of 10 NS 4. Areas of parallelograms and trapeziums 5. Areas and perimeters of composite figures	UNIT 14 Algebraic Expressions I. Sequences including arithmetic and geometric 2. Expansion 3. Factorisation 4. Algebraic manipulation	UNIT 20 Geometry I. Similar shapes 2. Pythagoras' theorem and 3-D Pythagoras 3. Exploring trigonometric ratios with 30-6090 and 45-45-90 triangles of varying dimensions (*not sin,cos,tan) 4. Trigonometry in right angled triangles and 3-D trigonometry	UNIT 26 Algebra and Geometry I. Arcs and sectors of circles 2. Using angle and shape facts to derive results and circle theorems 3. Proof in algebra and geometry and equation of a circle and the tangent to a circle 4. Variation and variation with powers UNIT 27 Functions I. Functions - will be taught at every appropriate opportunity (e.g. algebraic notation, rearranging formulae, linear graphs, mappings etc) and then brought together as a topic here
Summer I	UNIT 5 Applications of algebra I. Negative Numbers 2. Order of operations Order of ops NS 3. Simplify algebraic expressions 4. Substitution 5. Sequences (term-to- term, not nth term)	UNIT 10 Proportion \& Percentages I. FDP of amounts 2. Amounts as percentages 3. Percentage Increase and Decrease 4. Reverse Percentages	UNIT 15 Graphs and Proportion I. Primes and indices	UNIT 2I Number I. Calculations with and rules of indices and fractional indices 2. Standard form and calculations with standard form 3. Repeated change and percentage/ fraction problems 4. Standard nonlinear sequences and recurrence relations and iteration	
Summer 2	Completion \& revisit of Units I - 5	Completion \& revisit of Units 6 - 10	UNIT 16 2-D Geometry I. Construction and loci 2. Congruence and similarity 3. Triangles and quadrilaterals (angles on diagonals) 4. Angles in polygons	UNIT 22 Statistics I. Represent and describe distributions and histograms, cumulative frequency and box plots 2. Identify misleading graphs 3. Time series 4. Correlation and lines of best fit 5. Solve problems involving compound units	

[^0]NS - Numeracy Support

[^0]: Confidential - do not duplicate or distribute without the written permission of OGAT.

